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ABSTRACT
This paper introduces FedForecaster, a novel automated ma-
chine learning (AutoML) engine for univariate time-series fore-
casting in federated learning (FL) environments. Our engine ad-
dresses the challenge of automating the full pipeline of time-
series forecasting, including feature engineering, algorithm se-
lection, and hyperparameter tuning, without centralized data
collection. Leveraging a meta-model trained on a diverse knowl-
edge base of synthetic and real univariate time-series datasets,
the engine recommends the optimal forecasting algorithms based
on statistical meta-features aggregated across multiple clients.
Bayesian optimization is subsequently applied to refine the search
space, optimizing performance within the constraints of fed-
erated learning environments. Our solution outperforms base-
line approaches, including random search and N-beats model, as
demonstrated in evaluations across various domains. We utilize
the Flower framework to implement and evaluate our approach,
highlighting its potential to scale and adapt across different client
distributions and data types.

1 INTRODUCTION
Currently, machine learning (ML) is experiencing a paradigm
shift from centralized cloud data centres to distributed edge com-
puting environments [16]. With the advancement of mobile In-
ternet of Things (IoT) [35], a substantial amount of valuable time
series data is generated by distributed smart devices. Time series
data consists of a sequence of data points organized in chrono-
logical order and has been widely applied in various domains,
like anomaly detection [13, 15], and weather forecasting [6]. One
of the major research areas in this field is time series forecast-
ing [19]. However, the traditional process of building forecasting
models is often labor-intensive and requires expert knowledge
in feature engineering, algorithm selection, and hyperparameter
tuning [32]. Additionally, the sensitivity and privacy concerns
associated with users’ data pose significant challenges for cen-
tralized model training. Traditional centralized ML approaches
require all data to be aggregated on a central server for training,
which not only increases the overhead of data transmission but
also heightens the risk of privacy breaches.

To address the challenges of data confidentiality and communi-
cation efficiency, federated learning (FL) [1, 22, 34] has emerged as
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a promising distributed training paradigm. FL enables collabora-
tive training on large, multi-source datasets without exchanging
original data, thus preserving data privacy [17] while reducing
communication overhead [21]. Specifically, edge devices retain
their private data locally, and FL primarily achieves the train-
ing of a robust model through the aggregation and distribution
of local models across multiple rounds of communication. FL
holds significant potential for enabling collaborative model train-
ing; however, it encounters substantial challenges related to data
heterogeneity in practical applications [22].

Achieving optimal performance in FL environments signifi-
cantly relies on the careful optimization of hyperparameters [23,
37]. In contrast to traditional centralized settings, hyperparam-
eter tuning in FL is further complicated by the distinctive char-
acteristics of distributed environments, where data frequently
exhibits non-IID properties. While hyperparameter optimization
(HPO) is well-studied in centralized settings [11], FL presents
distinct challenges due to limited communication. In FL settings,
hyperparameters are adjusted dynamically across communica-
tion rounds to account for variations in local client data and global
model aggregation [14]. Moreover, FL’s privacy constraints fur-
ther complicate the evaluation and tuning of hyperparameters
across decentralized nodes.

The motivation behind this work stems from the need for a
fully automated, privacy-preserving time-series forecasting en-
gine that can be deployed in FL settings. Our research aims to
address this gap by proposing FedForecaster, an automated
machine-learning engine designed specifically for univariate
time-series forecasting in federated environments. FedForecaster
leverages ameta-model trained on a knowledge base of univariate
time-series datasets to recommend the best-performing forecast-
ing algorithms for any given dataset. This recommendation is
based on statistical meta-features aggregated across all clients,
ensuring that data privacy is maintained throughout the process.

The automation provided by FedForecaster simplifies the
process of time-series forecasting by enhancing the scalability
of FL systems, enabling forecasting model deployment across
distributed clients. By integrating Bayesian optimization into
the engine, we further refine the hyperparameter tuning pro-
cess, allowing for more efficient exploration of the algorithmic
search space. FedForecaster is evaluated on diverse time-series
datasets, and the results show its superiority in terms of fore-
casting accuracy and efficiency when compared to baseline ap-
proaches like random search and the N-beats [26] model.

This work introduces the following list of contributions:
• We propose FedForecaster, a fully automated machine-
learning engine for time-series forecasting in federated
learning (FL) environments. To the best of our knowledge,
this is the first work that investigates a fully automated



Figure 1: Overview of the FedForecaster framework. I) Meta-features are computed over each client. II) The centralized
server aggregates the meta-features and recommends a search space using a meta-learning approach. III) The server
recommends model instantiations alongside the aggregated meta-features to clients. The clients use the aggregated meta-
features to perform automated feature engineering and fit the recommended model. The server computes the global loss
and uses Bayesian optimization for the next model with hyper-parameters in an iterative way. IV) The server aggregates
the local models with the best global performance to be deployed on clients for inference.

approach, encompassing the entire pipeline of time-series
forecasting, including feature engineering, algorithm se-
lection, and hyperparameter tuning.

• FedForecaster utilizes a novel meta-learning approach
that employs globally aggregated meta-features to rec-
ommend the most promising forecasting algorithms. We
integrate a Bayesian optimization approach on the server
side to enable efficient hyperparameter tuning with re-
duced communication rounds, thereby enhancing both
model accuracy and efficiency.

• We apply a methodology for a unified time-series feature
engineering across the clients given the globally collected
meta-features across the data splits.

• We provide extensive empirical evaluations across diverse
datasets and FL scenarios, demonstrating the scalability
and effectiveness of FedForecaster compared to baseline
approaches like random search and N-beats.

This paper is structured as follows: Section 2 reviews the
related work, highlighting key limitations that motivate the de-
velopment of FedForecaster. Section 3 formulates the problem
addressed by FedForecaster, outlining its objectives. Section 4
describes the architecture of FedForecaster, detailing its key
components. Section 5 presents the empirical evaluation, includ-
ing the experimental setup and performance analysis. Finally,
Section 6 provides a conclusion and future research directions.

2 RELATEDWORK
Time-series forecasting is a critical task across industries, requir-
ing sophisticated techniques to model temporal dependencies
in data [3]. However, traditional approaches to time-series fore-
casting have predominantly relied on centralized datasets, lim-
iting their applicability in privacy-sensitive environments such
as FL [20]. While centralized solutions like ARIMA and LSTMs

Table 1: SuggestedMeta-Features for Federated Time-Series
Forecasting, their types [time-series (TS), statistical (Stat.)]
and Aggregation Methods

Meta-Feature Type Aggregation Method
No. of Clients Stat. NA
Sampling Rate TS NA
No. of Instances Stat. Sum, Avg, Min, Max, Stddev
Target Missing Values % Stat. Avg, Min, Max, Stddev
Stationary Features TS Avg, Min, Max, Stddev
Target Stationarity TS Entropy across clients
Stationary Features after 1st Order Diff TS Avg, Min, Max, Stddev
Stationary Features after 2nd Order Diff TS Avg, Min, Max, Stddev
Significant Lags using pACF TS Avg, Min, Max, Stddev
Insignificant lags between
1st and last significant ones TS Avg, Min, Max, Stddev
Detected seasonality components TS Avg, Min, Max, Stddev
Skewness Stat. Avg, Min, Max, Stddev
Kurtosis TS Avg, Min, Max, Stddev
Fractal dimension analysis of target Stat. Avg
Periods of seasonality components TS Min, Max
KL Div. among clients’ distribution Stat. Avg, Min, Max, Stddev

have demonstrated strong performance in time-series forecast-
ing, these models depend on access to aggregated data, which is
infeasible in FL environments due to privacy constraints [39].

FL enables ML model training across distributed clients with-
out centralized data aggregation. Though much of the existing
research in FL focuses on general ML tasks such as classification
and regression, relatively few works have addressed time-series
forecasting in FL settings [38]. Recurrent neural networks (RNNs)
are adapted for time-series forecasting across federated clients
[18]. Similarly, FedATM employed temporal attention mechanisms
for anomaly detection in time-series data [24]. Both studies show
that deep learning models can be effectively used for time-series
forecasting in FL environments. However, they do not focus on
automating model selection or tuning hyperparameters.



In FL environments, the heterogeneity of time-series data
across clients poses additional challenges, as data distributions
can vary significantly. This makes it difficult to develop a univer-
sal forecasting model that works well for all clients [31]. While
centralized forecasting models benefit from consistent data dis-
tributions, FL scenarios require models that can adapt to the
specific statistical characteristics of client data without violating
privacy. Existing FL approaches for time-series forecasting focus
on adapting specific neural network architectures but do not
explore broader algorithm selection or automated solutions for
heterogeneous client environments [5, 28].

AutoML has emerged as a powerful tool for automating the
process of model selection and hyperparameter tuning [7, 8]. Au-
toML platforms such as Auto-sklearn [10] and TPOT [25] have
been successfully applied in centralized contexts, offering signifi-
cant time and resource savings. Other platforms have been devel-
oped specifically for time-series forecasting tasks like AutoGluon
[9] and GizaML [29]. However, these platforms assume access to
a centralized dataset, rendering them unsuitable for FL environ-
ments.

Recent research has started to explore AutoML in FL. For
instance, FedNAS automates neural architecture search in FL set-
tings but does not specifically address the challenges of time-
series forecasting [12]. FLASH introduced an AutoML framework
for the combined algorithm selection and hyperparameter tuning
problem in the FL settings [2]. Existing AutoML methods in FL
focus primarily on model training automation and hyperparam-
eter tuning for general-purpose tasks [27], with little attention
to time-series data, which requires specialized techniques for
feature engineering and algorithm selection.

To the best of our knowledge, no AutoML solutions are specif-
ically designed for time-series forecasting in FL settings. The
lack of such solutions represents a gap in the current research
landscape, as time-series data is particularly prevalent in indus-
tries that require distributed, privacy-preserving data analysis.
FedForecaster fills this gap by introducing a fully automated en-
gine that addresses time-series forecasting in FL, automating the
entire pipeline from feature engineering to algorithm selection
and hyperparameter tuning.

3 PROBLEM FORMULATION
We formulate the problem that FedForecaster addresses as fol-
lows. Given a set of machine learning forecasting algorithmsA =

{𝐴(1) , 𝐴(2) , ...}, and a time-series federated dataset D across 𝑁
clients, where client 𝑗 has a private data split𝐷 𝑗 = 𝐷

𝑡𝑟𝑎𝑖𝑛
𝑗

∪𝐷𝑣𝑎𝑙𝑖𝑑
𝑗

such𝐷𝑡𝑟𝑎𝑖𝑛
𝑗

and𝐷𝑣𝑎𝑙𝑖𝑑
𝑗

are the training and validation time-series
splits, respectively. The goal is to find the best-performing al-
gorithm 𝐴

(𝑖 )
𝜆

with hyper-parameter configuration 𝜆 ∈ Λ that
minimizes the global aggregated loss 𝐿 across all clients within a
time budget 𝑇 . Equation 1 summarizes the problem formulation
such that 𝛼 𝑗 =

|𝐷 𝑗 |
|D | represents the weight of client 𝑗 loss value

in the aggregated global loss.

𝐴
(𝑖 )∗
𝜆

= argmin
𝐴∈A,𝜆∈Λ

𝑁∑︁
𝑗

𝛼 𝑗𝐿((𝐴(𝑖 )
𝜆
, 𝐷𝑡𝑟𝑎𝑖𝑛

𝑗 ), 𝐷𝑣𝑎𝑙𝑖𝑑
𝑗 ) (1)

4 METHODOLOGY
In this section, we present themethodology of the FedForecaster
framework. Figure 1 illustrates the architecture of FedForecaster.

The framework primarily comprises three phases: (a) the meta-
learning phase (Section 4.1), (b) the feature engineering phase
(Section 4.2), and (c) the optimization phase (Section 4.3). In
the meta-learning phase, various instantiations of the machine-
learning models are proposed based on globally aggregated meta-
features that characterize the input dataset. These meta-features
are communicated with the clients to support the feature extrac-
tion decisions and automate the feature engineering stage. The
recommended instantiations are likely to yield strong perfor-
mance and serve as a warm start to the optimization process,
which employs Bayesian optimization for hyperparameter tun-
ing.

Figure 2: Offline Phase: A meta-model is fitted on a knowl-
edge base to recommend algorithm instantiations. The
knowledge base is constructed from the meta-features of
a collection of datasets along with the best forecasting
algorithm over each dataset obtained after applying grid
search. Online Phase: Themeta-features are extracted from
the clients’ data splits. The meta-model is used to recom-
mend algorithm instantiations given the aggregated meta-
features.

4.1 Meta-Learning Phase
We utilize a meta-learning approach to identify machine learning
algorithm instantiations that are expected to perform effectively
on new datasets. This meta-learning process consists of two
phases: an offline phase, where a meta-model is trained using
a diverse set of datasets, and an online phase, where the meta-
model is applied to recommend suitable algorithm instantiations
for the target dataset. The overall methodology is illustrated in
Figure 2, and detailed in Algorithm 1.

4.1.1 Offline Phase. Weuse a collection of time-series datasets
from the GizaML knowledge base [29]. The knowledge base con-
sists of 512 synthetic datasets and 30 real-world datasets ob-
tained from various open data platforms, including Kaggle1 and
the Nasdaq stock market2. The synthetic datasets were gener-
ated by varying several factors, such as seasonality components,
sampling frequencies, signal-to-noise ratios, the percentage of
missing values, and the nature of the signal components (additive
or multiplicative). These variations aim to capture a wide range of
meta-features that describe the characteristics of time-series data.
To simulate FL environments, we split the datasets randomly into
5, 10, 15, or 20 clients with time-series splits, ensuring that each
client receives at least 500 instances per split. If a dataset does
not meet this minimum instance threshold, it is excluded from
the knowledge base.
1https://kaggle.com/
2https://www.nasdaq.com

https://kaggle.com/
https://www.nasdaq.com


The core of our knowledge base consists of a collection of
synthetic and real datasets, from which we extract statistical and
time-series meta-features for each dataset. These meta-features
capture various properties, including general trend, seasonality,
and stationarity, as detailed in Table 1. These meta-features serve
as the "fingerprint" of the time-series data, helping to identify
the best-performing forecasting algorithms. It is important to
note that the collected meta-features are anonymized, ensuring
no sensitive data is shared across clients. Only the statistical
properties of the data are aggregated without centralizing the full
dataset. The server then aggregates and stores the meta-features
from all clients in the knowledge base.

For each dataset in the knowledge base, we conduct a compre-
hensive grid search over a predefined search space of forecasting
algorithms and hyperparameter configurations. The goal is to
identify the best-performing algorithm and its corresponding
hyperparameters. The search space of algorithms and hyperpa-
rameters used in this grid search is detailed in Table 2. A meta-
model is trained on the knowledge base to recommend the best
algorithms given the aggregated meta-features.

4.1.2 Online Phase. The meta-features are computed over
each client split. Then, the server aggregates all these meta-
features across the clients and feeds them into the pre-trained
meta-model, which recommends algorithms that are most likely
to perform well on the federated dataset. This recommendation
serves as the warm initialization for the hyperparameter tuning
phase (Algorithm 1: lines 3-10).

4.2 Feature Engineering
The feature engineering process is crucial for improving the
predictive performance of time-series models in FedForecaster.
Initially, linear interpolation is applied to handle any missing
value gaps in the time-series data.

4.2.1 Feature Extraction. Given the aggregated meta-features
from the server, each client independently extracts features from
their local time-series data (lines 11-13) as follows:

(1) Trend Feature: The trend component is extracted by first
applying the Augmented Dickey-Fuller test to determine
the stationarity of the time-series. Depending on whether
the time-series is stationary, linear, or logistic, a Prophet
model [30] is fitted to estimate the trend component.

(2) Time Features: Temporal features such as day of the
week, hour of the day, and month of the year are extracted
to capture periodicity in the data.

(3) Lag Features: The statistically significant global lags are
computed using the partial autocorrelation function (ACF).
The number of lags is determined by the maximum count
of significant lags identified during the meta-feature cal-
culation stage across all clients.

(4) Seasonality Features: The top 𝑁 seasonal components
are extracted using a weighted periodogram across all
clients. The most important seasonalities are included in
the feature set.

While some extracted features, such as seasonality compo-
nents and significant lags are already extracted during the meta-
features extraction phase (Table 1), new features like time and
trend components are not used in the meta-features.

4.2.2 Feature Selection. Each client computes the feature im-
portance scores using a Random Forest regressor. The aggregated
average feature importance scores are evaluated in the server,

aiming to keep only the most important features contributing to
95% of the sum of feature importance scores and discarding the
less important ones to reduce the dataset dimensionality.

4.3 Hyperparameter Tuning
The hyperparameter optimization process in FedForecaster
leverages Bayesian optimization to efficiently tune forecasting
algorithms across federated clients (Lines 14-22). The algorithm
instantiations recommended by the meta-model serve as the ini-
tialization for Bayesian optimization, which is evaluated locally
by each client on their validation sets. The resulting local losses
are aggregated by the server to compute a global loss value. The
global feedback is used to update the surrogate model, enabling
it to balance exploration of new configurations with exploitation
of promising ones. Through iterative updates, the server refines
its recommendations, ensuring that each subsequent set of con-
figurations is informed by prior results and aimed at improving
performance. The process continues until a predefined time bud-
get is exhausted, optimizing the average aggregated performance
across clients.

4.4 Inference
Once the globally optimized hyperparameters are identified, they
are shared with all clients, who then use these configurations
to train their final models on local data (Lines 23:25). This ap-
proach efficiently navigates large search spaces while minimizing
computational burden. The server then aggregates the locally
trained models to generate the final federated forecast (Lines
26:27). This approach ensures that hyperparameter optimization
is efficient and privacy-preserving while maintaining the global
optimization objectives.

Table 2: Search Space for Forecasting Algorithms in
FedForecaster

Algorithm Hyperparameters Values
Lasso alpha (𝑙𝑜𝑔 (𝑒−5 ) , 𝑙𝑜𝑔 (10))
Regressor selection {cyclic, random}
LinearSVR C [1 : 10]
Regressor epsilon [0.01 : 0.1]
ElasticNetCV l1_ratio [0.3 : 10]
Regressor selection {cyclic, random}
XGB n_estimators [5 : 20]
Regressor max_depth [2 : 10]

learning_rate [0.01 : 1]
reg_lambda [0.8 : 10]
subsample [0.1 : 1]

Huber epsilon {1.0, 1.35, 1.5}
Regressor alpha [𝑙𝑜𝑔10 (𝑒−3 ) : 𝑙𝑜𝑔10 (𝑒2 ) ]
Quantile alpha [𝑙𝑜𝑔10 (𝑒−3 ) : 𝑙𝑜𝑔10 (𝑒2 ) ]
Regressor quantile [0.1 : 1]

5 EMPIRICAL EVALUATION
5.1 Experimental Setup
We present the experimental evaluation of FedForecaster in
comparison to the N-beats algorithm implemented in a federated
context and random search within an FL setting. All experiments
were conducted using Flower framework [4], and the source
code is publicly available3. Each method was allocated a max-
imum time budget of 𝑇 = 5 minutes for the hyperparameter
3https://github.com/giza-data-team/FedForecaster

https://github.com/giza-data-team/FedForecaster


Algorithm 1 Federated AutoML Framework (FedForecaster)
1: Input: Time-series data splits at clientsD = 𝐷1∪𝐷2∪ ...∪𝐷 𝑗 ,

pre-trained recommendation meta-model 𝑅 at server, and
Time budget 𝑇 or Number of iterations 𝐼

2: Output: Best global model with hyperparameters 𝐴(𝑖 )
𝜆

3: for each client 𝑗 do
4: Split time-series data into training and validation sets.

𝐷 𝑗 = 𝐷
𝑡𝑟𝑎𝑖𝑛
𝑗

∪ 𝐷𝑣𝑎𝑙𝑖𝑑
𝑗

5: Compute statistical meta-features from client data splits
6: Send meta-features to server
7: end for
8: Server aggregates meta-features from all clients
9: Server feeds aggregated meta-features into meta-model 𝑅
10: Meta-model 𝑅 recommends a search space of forecasting

algorithms A′ ⊂ A
11: for each client 𝑗 do
12: Perform feature engineering on time-series data splits (see

Subsection 4.2)
13: end for
14: Initialize Bayesian optimization with recommended search

space (A′) in the server
15: for Time Budget 𝑇 OR Number of iterations 𝐼 do
16: Server recommends the next algorithm with hyper-

parameters configuration 𝐴′
𝜆

∈ A′ using Bayesian Op-
timization to clients

17: for each client 𝑗 do
18: Fit the model (𝐴′

𝜆 𝑗
) on client 𝑗 data split

19: Send the fitted local model updates and performance to
the server

20: end for
21: Server aggregates the global loss 𝐿
22: end for
23: for each client 𝑗 do
24: Final model and hyperparameter configuration with the

best global performance (𝐴𝜆 𝑗
) is fitted on client split.

25: end for
26: Server aggregates local models (Â𝜆)
27: Server deploys final global model (𝐴𝜆) to all clients.

tuning. N-beats was tuned to achieve the best Mean Squared
Error (MSE) global loss, and the final hyper-parameters were 256
for the batch size, learning rate 5𝑒−4, and the number of seasonal
and trend neurons were 512 and 64, respectively. The count of
generic, trend, and seasonal layers was set to 2. The meta-model
of FedForecaster is set to predict the most promising 𝐾 = 3
algorithms. The Bayesian optimization algorithm was set to use
the expected improvement as an acquisition function with the
Gaussian processes surrogate model.

We evaluated the performance of the algorithms on 12 real-
world datasets from Kaggle and the Nasdaq stock market that
were not used in constructing the knowledge base for FedForecaster.
The stock market datasets include prices of stocks within the
same exchange-traded funds (ETFs) over a shared time period,
while the other datasets were split across a number of clients
ranging from the set of {5, 10, 15, 20} clients using time-series
splits. To ensure the presence of enough samples per client, larger
client numbers resulting in smaller splits than 500 instances are
discarded. The aim was to minimize the Mean Squared Error
(MSE) for all methods within the given time budget. The experi-
ments were repeated 3 times with different random seeds and the

final average results are reported. The experiments were done
using 1 vCPU per client node with 2 GB memory running on
Intel Xeon(R) Gold 6138 CPU@2GHz.

5.2 Results and Discussion
Table 3 summarizes the performance comparison of FedForecaster
against the baselines of random search and N-beats in federated
settings. The N-beats Cons. is the N-beats algorithm trained
on the consolidated time-series clients’ splits into a single dataset
except for the last 3 ETFs datasets that were originally not a sin-
gle time-series signal and concatenating them back into a single
dataset could be misleading. The table presents the number of
dataset instances (Len.), the number of clients (Clients), and the
test Mean Squared Error (MSE) results for each method.

The results in Table 3 demonstrate that FedForecaster con-
sistently outperforms random search and N-beats in most cases,
particularly when dealing with complex datasets with varying
client sizes. Notably, FedForecaster achieved the lowest test
mean squared error (MSE) in 10 out of the 12 datasets within the
constrained time budget, achieving an overall ranking of 1.17,
compared to 2.17 for random search and 2.67 for N-beats. For ex-
ample, on the USBirthsDaily dataset, FedForecaster achieved
an MSE of 434.89, compared to 533.37 for random search and
983.36 for N-beats. Similarly, on the BOE-XUDLERD dataset, it
achieved a significantly lower MSE of 0.006 compared to both
baselines. Additional experiments were carried out on possible
client counts and different time budgets in our repository 3. The
results demonstrate consistency with the findings of our study.

However, there are few cases where random search or N-beats
performed better, such as in the nasdaq Brazil Base Financial
Rate and Energy Select Sector datasets, where random search
outperformed FedForecaster slightly. These instances suggest
that, while FedForecaster generally provides superior perfor-
mance within limited time constraints, there may be room for
further improvement in certain scenarios, especially where sim-
pler models can perform well with less tuning.

FedForecaster demonstrated robust performance across a
diverse set of datasets, highlighting its effectiveness in FL en-
vironments where data privacy and computational constraints
are crucial. The overall ranking and average MSE confirm its
potential as a reliable tool for automated time-series forecasting
in such distributed settings.

The poor performance of N-Beats in the federated settings
could be attributed to the small data splits on each client node,
which is unsuitable for neural-based models requiring larger
datasets for practical training. As the number of clients increases,
the size of each split decreases, limiting N-Beats’ ability to capture
patterns accurately. However, as demonstrated in the N-Beats
Cons. results, the performance is improved when training with
longer data sets.

To statistically validate the performance of FedForecaster,
we performed the Wilcoxon Signed-Rank test [33], that is a non-
parametric statistical test used to compare paired samples to
assess whether their population mean ranks differ. We com-
pare FedForecaster average MSE results with those of random
search and N-beats across the 12 datasets. The p-value for the
comparison between FedForecaster and random search was
𝑝 = 0.034, and between FedForecaster and N-beats, 𝑝 = 0.003.
Since both p-values are below the significance level of 0.05,
we conclude that there is significant evidence to suggest that



Table 3: Performance Comparison of FedForecaster, Random Search, and N-beats in FL settings and N-beats Cons. on
consolidated time-series datasets using 12 different datasets in terms of MSE

Dataset Len. N-Beats Cons. Clients FedForecaster Random Search N-Beats Best Model
BOE-XUDLERD 15653 0.004 20 0.006 0.011 0.071 HuberRegressor
SunSpotDaily 73924 16.51 20 29.37 32.07 63.38 Lasso
USBirthsDaily 7305 820.02 5 434.89 533.37 983.36 LinearSVR
nasdaq_Brazil_Base_Financial_Rate 10091 0.031 10 0.058 0.048 0.153 LinearSVR
nasdaq_Brazil_Pr_Base_Financial_Rate 10091 0.0014 15 0.008 0.012 0.008 HuberRegressor
nasdaq_Brazil_Saving_Deposits1 812 0.0252 5 0.028 0.039 0.412 Lasso
nasdaq_Brazil_Saving_Deposits2 1182 0.0057 10 0.020 0.025 0.024 XGBRegressor
nasdaq_EIA_PET_RWTC 9124 1.11 5 1.29 1.40 8.66 LinearSVR
nasdaq_WIKI_AAPL_Price 9124 3.99 15 3.76 4.24 4.15 LinearSVR
Energy Select Sector ETF 2517 - 10 3.44 2.87 24.61 Lasso
The Technology Sector ETF 2517 - 10 40.00 101.70 75.98 QuantileRegressor
Utilities Select Sector ETF 2517 - 10 1.30 11.70 17.58 HuberRegressor

FedForecaster outperforms both baseline methods within the
5-minute time budget.

Runtime. there is an offline overhead in FedForecaster to
construct the knowledge base and training themeta-model.While
this effort runtime is unimportant as it is just made once for train-
ing a good meta-model, it is undoubtedly an additional effort to
augment the knowledge base with more datasets to train a more
robust meta-model and enhance its predictions. A single record
in our constructed knowledge base takes around 114.53 seconds.
For each new FL task, the client’s meta-feature extraction cost
depends on the client’s hardware specs. However, this does not
affect the inference stage and could be done at any time from
the client side; it took, on average, 2.74 seconds for each client
to construct its meta-features over our reported benchmarking
datasets, which is insignificant time compared to the online phase
(5 minutes). Although no offline effort is needed for the other
baselines, N-beats require hyper-parameter optimization to its
network architecture, which could be time consuming.

5.3 Meta-Model Evaluation
To select the best meta-model for recommending forecasting
algorithms, we trained and evaluated several classifiers using
the knowledge base constructed from the 512 synthetic and 30
real datasets. Our objective was to optimize the Mean Reciprocal
Rank (MRR) at the top 𝐾 = 3 predictions, ensuring that the best-
performing forecasting algorithms were highly ranked in the
recommendations. MRR is used to evaluate the effectiveness of
retrieval systems, calculated as the average of the reciprocal ranks
of the first relevant results [36]. The knowledge basewas split into
80% training and 20% validation datasets, and hyperparameter
tuning was performed using Random Search on the validation
set.

Table 4 summarizes the performance of the different classifiers
in terms of MRR@3 and F1 Score. The Random Forest Classifier
outperformed the other classifiers, achieving the highest MRR@3
of 85.8% and an F1 score of 74%. This model demonstrated supe-
rior ability to accurately recommend the top-performing algo-
rithms based on the meta-features of the datasets. Other classi-
fiers, such as XGBoost and Logistic Regression, also demonstrated
strong performance, but they have not reached the predictive
power of the Random Forest Classifier.

The Random Forest Classifier, with its high MRR@3 and F1
score, was selected as the final meta-model for FedForecaster.

Table 4: Performance of Different Classifiers for the Meta-
Model

Model MRR@3 F1 Score
XGBClassifier 0.840 0.74
Logistic Regression 0.825 0.70
Gradient Boosting 0.825 0.73
Random Forest 0.858 0.74
CatBoost 0.813 0.69
LightGBM 0.790 0.66
Extra Trees 0.788 0.64
MLPClassifier 0.663 0.49

This meta-model efficiently identifies the top algorithms for any
new federated time-series dataset based on its meta-features.

6 CONCLUSION
In this paper, we introduced FedForecaster, a novel automated
machine-learning framework designed to address the challenges
of time-series forecasting in FL environments. By utilizing a meta-
model for algorithm recommendation based on statistical meta-
features and Bayesian optimization for hyperparameter tuning,
FedForecaster achieves efficient model training without cen-
tralized data aggregation. The experimental results demonstrate
that FedForecaster outperforms both random search and the
N-Beats algorithm in terms of minimizing MSE across multiple
real-world datasets, all within a limited time budget. Addition-
ally, statistical validation using the Wilcoxon Signed-Rank Test
confirmed that FedForecaster provides statistically significant
improvements over baseline methods.

Future Research Directions. While FedForecaster has shown
promising results, several future research directions remain to be
explored. One area of interest is expanding the framework to han-
dle multivariate time-series data, as real-world applications often
involve complex interactions between multiple variables. An-
other potential enhancement is exploring dynamic model adap-
tation to adjust for shifting data distributions over time.
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