


GizaML: A Collaborative Meta-learning Based Framework Using
LLM For Automated Time-Series Forecasting

Esraa Sayed
Giza Systems - Software
Development Center

esraa.sayed@gizasystems.com

Mohamed Maher
University of Tartu

Tartu, Tartu
mohamed.abdelrahman@ut.ee

Omar Sedeek
Giza Systems - Software
Development Center

omar.sedeek@gizasystems.com

Ahmed Eldamaty
Giza Systems - Software
Development Center

ahmed.aldamati@gizasystems.com

Amr Kamel
Giza Systems - Software
Development Center

amr.kamel@gizasystems.com

Radwa El Shawi
University of Tartu

Tartu, Tartu
radwa.elshawi@ut.ee

ABSTRACT
Machine learning algorithms demonstrate notable success in ap-
plications relying on time-series data, such as energy forecasting,
environmental monitoring, and telecommunications. With the
increasing prevalence of time-series data, there is a growing de-
mand for accurate and generalized models for forecasting tasks.
Training such models is a highly iterative process, requiring a
profound understanding of both time-series data and machine
learning algorithms. We demonstrate GizaML, a meta-learning-
based framework designed specifically for automated algorithm
selection and hyperparameter tuning for time-series forecasting.
GizaML primarily comprises two key phases: the data and feature
engineering phase, and the recommendation and optimization
phase. In the data and feature engineering phase, GizaML resam-
ples the dataset for uniform time intervals, handles outliers, and
extracts various time-series-related features automatically. In
the recommendation and optimization phase, GizaML employs
a meta-model that proposes instantiations of machine learning
pipeline configurations that are anticipated to exhibit strong per-
formance on a novel dataset. These configurations warm start
the optimization phase that employs an efficient Bayesian opti-
mization method. The meta-model employs a Large Language
Model (LLM) that is used to generate an embedding representa-
tion vector for the datasets’ representations. GizaML utilizes 9
different regression machine learning algorithms and different
hyper-parameters configurations for each one. Moreover, GizaML
leverages new runs to continuously enhance the performance
and robustness of the meta-model recommendations for future
time-series forecasting tasks. Our demonstration scenario shows
that GizaML outperforms the current state-of-the-art open-source
automated machine learning frameworks.

1 INTRODUCTION
Time-series data and machine learning present unique challenges
and opportunities in the ever-evolving domain of data science.
Time-series data analysis in the field of machine learning is fo-
cused on developing algorithms capable of autonomously learn-
ing and improving their predictive capabilities for forecasting
without direct human guidance. The efficacy of these machine
learning methodologies is heavily reliant on the abundance of
extensive time-series datasets. It is indisputable that the greater
the volume of accessible clean data, the more comprehensive

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and resilient the insights and outcomes these algorithms can
predict [14]. In the current landscape, there is a persistent ex-
pansion in both the scale and accessibility of time-series data
across various facets of daily life [1]. Consequently, there has
been a notable surge in achievements by machine learning within
the domain of real-time time-series forecasting [8]. This trend
has spurred a heightened demand for proficient data scientists
equipped with profound knowledge and practical experience in
employing diverse machine learning algorithms. Such expertise
is essential for constructing models capable of attaining desired
forecasting performance and coping with the escalating influx
of the daily produced time-series data. The machine learning
modeling process is iterative and lacks a universal solution for all
scenarios. Experimenting with diverse algorithms and configura-
tions is inefficient. Consequently, there is a growing emphasis on
automating the machine learning modeling for time series data
due to the scalability challenges faced by data scientists. [9].

Several frameworks have been developed to facilitate the au-
tomation of the machine learning modeling process on tabu-
lar datasets. For instance, Auto-Sklearn [2], a framework built
on the popular Python scikit-learn machine learning package 1.
Auto-Sklearn considers prior performance on comparable datasets
and forms ensembles from the models evaluated during the op-
timization process. Another example is TPOT[6] that employs
genetic programming and SmartML [7] which follows a meta-
learning based approach for algorithm selection and Bayesian op-
timization for hyper-parameter tuning of the selected algorithms.
Additional tools in the time-series domain specifically encom-
pass Auto-Gluon [5] employs Hyperband and Bayesian methods
for hyper-parameter optimization. In addition, Auto-Gluon inte-
grates traditional time-series statistical models, machine learning-
based forecastingmethods, and ensemble techniques. Yet, the tool
relies on the manual extraction of the exogenous features that
may influence the target time-series predictions. Furthermore,
AutoTS2 enables users to construct and choose from a variety of
time series models, including techniques such as ARIMA, SARI-
MAX, VAR, decomposable models considering trend, seasonal-
ity, and holidays, along with ensemble these statistical machine
learning models. However, the parameter estimation of these
statistical models is computationally expensive and not suitable
for real-time applications with high-velocity data.

In this demonstration, we present GizaML, a powerful Python
package tailored for seamless integration into Python environ-
ments and web applications. Unlike conventional approaches for

1https://scikit-learn.org/stable/
2https://github.com/AutoViML/Auto_TS

https://scikit-learn.org/stable/
https://github.com/AutoViML/Auto_TS


A) Data & Feature Engineering
Feature Extraction

B) Search Space Recommendation & Optimization

Meta Learning

Data Sources Layer

LLM Meta-Model 
Encoder & Recommender

Search Space 
Optimization

Knowledge 
Vector Database

Presentation Layer

save Load & 

instr
uct

Dataset Description 
Constructor

Meta-Features 
Embedding Calculation

Data Preprocessing

Model

Figure 1: GizaML: Framework Architecture.

tabular data, GizaML is specifically engineered for time-series
data, offering end-to-end automation for training forecasting
machine learning algorithms in addition to integration with in-
terpretability techniques. One of the key features of GizaML is
the recommendation component that employs a meta-model
that suggests machine learning models with hyper-parameters
configurations expected to demonstrate high performance on a
new given dataset. More specifically, the meta-model provides
tailored recommendations for machine learning regressors for
each unique time-series dataset. Notably, these recommenda-
tions maintain confidentiality, as GizaML refrains from revealing
exact instances from the dataset. Following SmartML [7], the
meta-model draws insights from previous runs and continuously
updates its knowledge base. This knowledge-driven approach
reduces the hyper-parameter tuning search space and expedites
the optimization process. In this demonstration, we provide a
performance comparison with other state-of-the-art frameworks,
highlighting GizaML’s capacity to excel, particularly within con-
strained running time budgets.

2 GIZAML ARCHITECTURE
Figure 1 illustrates the architecture of GizaML. The framework
mainly consists of two phases: a) the data and feature engineering

Dataset

Dataset Description 
Paragraph Constructor

Meta-Features 
Extractor

1.
LL

M

2. Vector Database

Dataset Embedding Vector

Search Space 
Recommendation

Figure 2: The search space recommendation for Time-
Series AutoML task using a prompt tuned LLM to generate
the dataset embedding vector and a vector database for
querying similar datasets.

Type Description
Time Sampling frequency in minutes
Time # Stationary features
Time # Non Stationary features
Time # Stationary Features after 1st order differencing
Time # Stationary features after 2nd order differencing
Time # Significant lags by pACF

Time # Insignificant lags between the
last and first significant ones

Time # Seasonality components
Time # Fractal Dimension
Time Series Type (additive/multiplicative)
Time Trend type (linear/logistic)
Time pACF value for the first 10 lags
Statistical Target Feature Kurtosis
Statistical Target Feature Skewness
Statistical Target Feature Missing Values %
Statistical # Instances
Statistical Min, Max, Avg, Stdev of the 10 percentiles of Target Feature

Table 1: List of the extracted meta-features from the time-
series datasets.

phase, and b) the recommendation and optimization phase. The
typical user flow of GizaML starts with the data source layer when
a time-series dataset in CSV format is uploaded as input, with
the user specifying the timestamp and target feature columns,
the sampling frequency for data source generation, the time bud-
get constraint (T) for optimization, and the metric to be used
in evaluation. In the data preprocessing and feature engineer-
ing phase, GizaML begins by resampling the dataset to ensure
that consecutive instances are equally spaced in the time do-
main. [10] statistical time-series model, trained on the input
training split. Subsequently, a fully automated process computes
various time series-based features, starting from fundamental
time-based features such as Hour-Of-Day, Day-Of-Week, and
Month-Of-Year. The trend component is derived from the de-
composed time-series target feature using the FBprophet [10]
statistical time-series model. Fourier features serve as indicators
for the seasonality components in the target feature, determined
through observations in a periodogram [3], providing insights
into the strength of different frequencies in the time-series data.
Additionally, lagged features of the target column are extracted
by computing the partial auto-correlation of a lag, accounting for
all previous lags up to a maximum of 30 lags, to mitigate the curse
of dimensionality in the dataset. Finally, a set of statistical [12]
and time-based meta features described in Table 1 are computed
and used to construct a description paragraph to characterize
a dataset. In the recommendation and optimization phase, we
employ meta-learning to recommend instantiations of models to
warmstart the optimization procedure. More specifically, across a
substantial number of datasets, we collect both performance data
and the embedding representation vector of the dataset-specific
description paragraph obtained from an instruct Large Language
Model (LLM), aiding in the determination of the optimal algo-
rithm for application to a new dataset. Given a new dataset, we
compute its meta-features, as detailed in Table 1, and generate a
descriptive paragraph. Subsequently, leveraging the instruct LLM
to obtain the embedding representation vector for the dataset-
specific description. Using this embedding vector, we query a



Figure 3: The interface of GizaML. Forecasting job configurations are on the Left. The model performance, forecasted
predictions, and model explanation providing the importance scores of the most important input feature are on the Right.

Algorithm Name Numerical
Parameters

Categorical
Parameters Package

Adaboost 2 1 scikit-learn
SVR 2 1 scikit-learn
RandomForest 2 0 scikit-learn
Lasso 1 0 scikit-learn
GaussianProcess 1 0 scikit-learn
XGBoost 7 0 xgboost
Lightgbm 9 1 lightgbm
ElasticNet 1 0 scikit-learn
ExtraTrees 4 1 scikit-learn

Table 2: Search Space of Regression Algorithms in GizaML.

knowledge base employing cosine similarity to identify the most
similar time-series datasets. The top-performing configurations
(machine learning algorithms and hyper-parameters) from the
most similar 𝑁 datasets are recommended to warm start the
optimization process, with 𝑁 defaulting to 5. For further opti-
mization, we employ the SMAC algorithm. The input dataset is
split into training and validation time-series splits. A time budget
𝑇 is then allocated to exploit the hyper-parameter search space
of the recommended models, maximizing the performance on the
validation split. The resulting optimized pipeline, along with the
embedding vector of the input dataset, is stored in the knowledge
base for subsequent use in fine-tuning the LLM during an offline
phase. Finally, the optimized machine learning algorithm with
hyper-parameter configurations is saved along with the feature
extraction stages to be used later in online forecasting scenar-
ios. Additionally, an interpretability machine learning package
(Lime)3 is integrated to explain the most important features im-
pacting the model forecasted predictions to the non-technical
user. The predictions and evaluation scores of the model are
demonstrated in the presentation layer dashboards.

3https://github.com/marcotcr/lime

3 META-MODEL FINE TUNING
Our meta-learning approach works as follows. In an offline phase,
for each dataset within a knowledge base, consisting of 512 syn-
thetic datasets and 30 real datasets from open data platforms
including Kaggle 4 and Nasdaq stock market 5), we apply grid
search over the search space described in Table 2 to store an
instantiation of the given machine learning framework with the
strong empirical performance for that dataset. The synthetic time-
series datasets are generated by varying the seasonality compo-
nents, sampling frequencies, signal-to-noise ratios, percentages
of missing values, and the nature of signal components (addi-
tive or multiplicative), aiming to encompass a broad spectrum of
meta-features describing the datasets. Next, for each dataset in
the knowledge base, we assess a set of meta-features described in
Table 1, and construct a characterizing paragraph for the descrip-
tion of the dataset. Then, a set of instructions is constructed to
fine-tune the LLM in the prompt tuning paradigm [13] with addi-
tive parameter-efficient fine-tuning mode [4]. Llama2 (7B) model
[11] is utilized as the base LLM for our meta-model training. The
description paragraphs of all the datasets in the knowledge base
are used as prompts and the best-performing machine learning
algorithms with the set of default hyper-parameters are consid-
ered as the completions. The final layers of the LLM network are
removed to be used as an encoder generating embedding repre-
sentation vectors for the datasets. These vectors of the knowledge
base datasets are further stored in a vector database to be queried
later in the online stage. We used the open source vector similar-
ity search feature for PostgreSQL databases (pgvector) 6. In an
online phase, for a new dataset, we calculate its meta-features and
create the characterizing paragraph. Using the LLM, we then de-
rive the embedding representation vector for the dataset-specific
description paragraph. A similarity-based algorithm utilizing the
cosine distance metric is applied to query the closest datasets in
the knowledge base. The LLM is fine-tuned regularly in an offline

4https://kaggle.com/
5https://www.nasdaq.com
6https://github.com/pgvector/pgvector

https://github.com/marcotcr/lime
https://www.nasdaq.com


5 min (MSE) 10 min (MSE)
Dataset
Name

Len. Miss% Rate GizaML AutoSk TPOT GizaML AutoSk TPOT
room_temperature 7056 0% 1 Hour 3.0164 4.0518 3.4936 2.9645 3.7679 3.4643
daily_CrudeOil 10831 31% 1 Day 101 2337 48 101 1714 48
daily-min-temperatures 3652 0% 1 Day 4.7084 6.0245 4.7310 4.7086 4.8848 4.6301
nasdaq_Brazil_Financial 10211 1% 1 Day 0.0068 0.0299 0.0070 0.0068 0.0299 0.0072
nasdaq_Brazil_deposits1 4059 8% 1 Day 0.0299 0.0360 0.0338 0.0299 0.0360 0.0340
nasdaq_Brazil_deposits2 11825 8% 1 Day 0.0022 0.0194 0.0031 0.0022 0.0192 0.0036
weekly_Gasoline_price 652 0% 7 Days 0.0011 0.0012 0.0014 0.0011 0.0012 0.0012
monthly_CO2_PPM 192 0% 28 Days 0.5147 1.8433 1.2688 0.5148 1.0197 1.2501
monthly_water_price 423 0% 28 Days 42 65 36 42 51 34
nasdaq_Brazil_Referential 185 0% 31 Days 0.0026 0.0030 0.0036 0.0026 0.0025 0.0031
nasdaq_Brazil_deposits3 133 0% 31 Days 0.0081 0.0047 0.0131 0.0081 0.0058 0.0126
nasdaq_EIA_PET_RWTC 434 0% 28 Days 62 129 68 62 129 65
Average Rank 1.25 2.75 2.08 1.42 2.58 2.00

Table 3: Performance Comparison: GizaML VS Auto-Sklearn and TPOT in terms of MSE. The average ranking represents
that The lower the ranking, the better performance achieved by the framework compared to the other ones.

phase over the collaborative knowledge base incorporating the
newly added data from the users’ trials.

4 DEMO SCENARIO
GizaML is available as a Web application and a python package
7. In this demonstration 8, we present the workflow of GizaML
framework (See Figure 3 left). In particular, we show how our ap-
proach can help non-expert machine learning users to effectively
build machine learning forecasting jobs with little effort. We start
by introducing the tackled challenges and clarifying our frame-
work’s primary objectives and functionalities. Subsequently, we
guide the audience through the automated algorithm selection
and hyper-parameter tuning process using sample datasets. We
start by showing the different features provided for the end-user.
For example, the user can configure different options related to
the time budget for the forecasting task, and specify whether
model interpretability is needed. We guide the audience through
the distinct phases of the framework, culminating in the presen-
tation of the final results (See Figure 3 right).

Table 3 shows the performance comparison between GizaML,
Auto-Sklearn (AutoSk), and TPOT using the 12 real datasets that
were not used in building our knowledge base from Kaggle and
Nasdaq stock market. As shown in Table 3, these datasets have
different number of instances (Len.), missing values %, and sam-
pling frequencies (Rate). Small time budgets of 5 and 10 minutes,
respectively have been allocated for each dataset in each frame-
work with a target of minimizing the Mean Squared Error (MSE)
loss. The results show that GizaML outperforms Auto-Sklearn
and TPOT in 9 out of 12 datasets achieving an overall ranking of
1.25 compared to 2.75 and 2.08 for the other frameworks with 5
minutes time budget, respectively. Using a longer time budget (10
min), GizaML average ranking declined to 1.42 while keeping the
best performance across 8 out of the 12 datasets, which suggests
the importance of the proposed meta-learning approach with
small time budgets.

As an integral aspect of our demonstration, we offer a real-
time opportunity to assess the efficacy of GizaML in comparison
to other AutoML frameworks across diverse datasets. In future

7The source code of the GizaML is available on: https://github.com/giza-data-team/
GizaAutoML
8A demonstration screencast is available on: https://youtu.be/533KoUSJb8M

work, we will evaluate our framework on multivariate datasets
and support classification tasks with multi-step forecasting.

ACKNOWLEDGMENTS
We appreciate the efforts of Omar Marie, Mahmoud Taha, and
Ahmed Wael for their contributions to the demonstration. This
work is funded by the innovation hub at Giza Systems 9.

REFERENCES
[1] Ana Almeida, Susana Brás, Susana Sargento, and Filipe Cabral Pinto. 2023.

Time series big data: a survey on data stream frameworks, analysis and algo-
rithms. Journal of Big Data 10, 1 (2023), 83.

[2] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer,
and Frank Hutter. 2020. Auto-sklearn 2.0: The next generation. arXiv preprint
arXiv:2007.04074 24 (2020).

[3] David F Findley, Demetra P Lytras, and Tucker S McElroy. 2017. Detecting
seasonality in seasonally adjusted monthly time series. Statistics 3 (2017).

[4] Junxian He, Chunting Zhou, XuezheMa, Taylor Berg-Kirkpatrick, and Graham
Neubig. 2021. Towards a unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366 (2021).

[5] Aaron Klein, Louis C Tiao, Thibaut Lienart, Cedric Archambeau, and Matthias
Seeger. 2020. Model-based asynchronous hyperparameter and neural archi-
tecture search. arXiv preprint arXiv:2003.10865 (2020).

[6] Trang T Le, Weixuan Fu, and Jason H Moore. 2020. Scaling tree-based au-
tomated machine learning to biomedical big data with a feature set selector.
Bioinformatics 36, 1 (2020), 250–256.

[7] Mohamed Mohamed Maher Zenhom Abdelrahman Maher and Sherif Sakr.
2019. Smartml: A meta learning-based framework for automated selection
and hyperparameter tuning for machine learning algorithms. In EDBT: 22nd
International conference on extending database technology.

[8] Ricardo P Masini, Marcelo C Medeiros, and Eduardo F Mendes. 2023. Machine
learning advances for time series forecasting. Journal of economic surveys 37,
1 (2023), 76–111.

[9] Marc Schmitt. 2022. Automated machine learning: AI-driven decision making
in business analytics. arXiv preprint arXiv:2205.10538 (2022).

[10] Sean J Taylor and Benjamin Letham. 2018. Forecasting at scale. The American
Statistician 72, 1 (2018), 37–45.

[11] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023).

[12] Joaquin Vanschoren. 2019. Meta-learning. Automated machine learning:
methods, systems, challenges (2019), 35–61.

[13] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation
of prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 382–394.

[14] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. 2023.
Data-centric ai: Perspectives and challenges. In Proceedings of the 2023 SIAM
International Conference on Data Mining (SDM). SIAM, 945–948.

9https://gizasystems.com

https://github.com/giza-data-team/GizaAutoML
https://github.com/giza-data-team/GizaAutoML
https://youtu.be/533KoUSJb8M

	Abstract
	1 Introduction
	2 GizaML Architecture
	3 Meta-Model Fine Tuning
	4 Demo Scenario
	Acknowledgments
	References

